diketahui barisan yang dibentuk oleh semua bilangan asli

Catatan mengapa ada istilah g.l.b an l.u.b?.Perhatikan bahwa semua bilangan real yang lebih kecil dari 3 juga merupakan batas bawah. Demikian pula semua bilangan yang lebih besar dari 4 merupakan batas atas dari himpunan terbuka (3,4). Perhatikan bahwa kita dapat mengatakan barisan bilangan real 1 n n s sebagai suatu fungsi dari I ke R, kita mengatakan dari38 siswa terdapat 25 siswa gemar sepak bola 20 siswa gemar tenis meja dan 11 siswa gemarsepak bola dan tenis meja. berapakah banyak siswa yang tidak gemar sepak boala dan tenis meja? Diketahui barisan yang dibentuk oleh semua bilangan asli 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26., angka berapakah yang terletak pada bilangan ke 2004? Site De Rencontre Pour La France. Uji Kompetensi 209Matematika Kelas 10 bab 6 Barisan dan DeretSemester 1 K131. Tentukan banyak suku dan jumlah barisan aritmetika berikut!a. 4 + 9 + 14 + 19 + ... + 104b. 72 + 66 + 60 + 54 + ... + 12c. –12 – 8 – 4 – 0 + ... + 128d. –3 – 7 – 11 – 15 ... – 107JawabDika. 4 + 9 + 14 + 19 + ... + 104b. 72 + 66 + 60 + 54 + ... + 12c. –12 – 8 – 4 – 0 + ... + 128d. –3 – 7 – 11 – 15 ... – 107Dit banyak suku dan jumlah barisan aritmetika !PenyelesaianA. 4 +9+ 14+ 19+... 104a=4, b=5, Un=104n=104-4+5/5=105/5=21S21=21/24+104=10,5108=1134 B. 72+ 66+ 60+ 54+... 12 a=72, b=-6, Un=12n=12-72+-6/-6=-66/-6=11S11=11/272+12=5,584=462C. -12- 8- 4- 0- ... +128 kok minus bukan +128? jika minus polanya salaha=-12, b=4, Un=128n=128-12+4/4=128+12+4/4=144/4=36S36=36/2-12+128=18116=2088D. -3 -7 -11 -15 ... -107a=-3, b=-4, Un=-107n=-107-3+-4/-4=-107+3-4/-4=-108/-4=27S27=27/2-3-107=13,5-110=-14852. Tentukan banyak suku dari barisan berikut!a. 6 + 9 + 12 + 15 + ... = 756b. 56 + 51 + 46 + 41 + ... = – 36c. 10 + 14 + 18 + 22 + ... = 640JawabDika. 6 + 9 + 12 + 15 + ... = 756b. 56 + 51 + 46 + 41 + ... = – 36c. 10 + 14 + 18 + 22 + ... = 640Dit banyak suku dari barisan !PenyelesaianA. 6 + 9 + 12 + 15 + ... = 756a = 6b = 9 - 6 = 3Sn = 756Sn = n/2 2a + n - 1 b756 = n/2 + n - 1 3756 = n/2 12 + 3n - 3756 = n/2 9 + 3n756 = 4,5n + 1,5n^2bagi 1,5504 = 3n + n^2n^2 + 3n - 504 = 0n + 24 n - 21 = 0n = -24 V n = 21n = -24 -> TMjadi,n = 21B. 56 + 51 + 46 + 41 + ... = – 36a = 56b = -5-36 = n/2 + n-1 -5-36 = n/2 112 -5n +5 -72 = 117n - 5n^25n^2 - 117n - 72 = 05n + 3 n - 24 = 0n = - 3/5 V n = 24n=- 3/5 ->TMjadi, n=24C. 10 + 14 + 18 + 22 + ... = 640640 = n/2 + n-1 4640 = n/2 16 + 4n640 = 8n + 2n^2n^2 + 4n - 320 = 0n+20n-16 = 0n=-20 V n=16n=-20 -> TMjadi,n= 163. Tentukan jumlah deret aritmetika berikut!a. 3 + 9 + 18 + 30 + ... sampai dengan 18 2 + 10 + 24 + 54 + ... sampai dengan 10 1 + 7 + 18 + 34 + ... sampai dengan 14 50 + 96 + 138 + 176 + ... sampai dengan 10 –22 – 38 – 48 – 52 – ... sampai dengan 20 3 + 9 + 18 + 30 + ... sampai dengan 18 2 + 10 + 24 + 54 + ... sampai dengan 10 1 + 7 + 18 + 34 + ... sampai dengan 14 50 + 96 + 138 + 176 + ... sampai dengan 10 –22 – 38 – 48 – 52 – ... sampai dengan 20 Tentukan jumlah deret aritmetika !PenyelesaianA. 3 + 9 + 18 + 30 + ... sampai dengan 18 = 3, b = 9, c = 9, d = 3b. 2 + 10 + 24 + 54 + ... sampai dengan 10 = 2, b = 10, c = 8, d = 6c. 1 + 7 + 18 + 34 + ... sampai dengan 14 = 1, b = 7, c = 11, d = 5d. 50 + 96 + 138 + 176 + ... sampai dengan 10 = 50, b = 96, c = 42, d = -4e. –22 – 38 – 48 – 52 – ... sampai dengan 20 = -22, b = -38, c = -10, d = 64. Diketahui barisan aritmetika dengan suku ke-7 dan suku ke-10 berturut-turut adalah 25 dan 37. Tentukanlah jumlah 20 suku pertama!JawabDik suku ke-7 dan suku ke-10 berturut-turut adalah 25 dan 37DIt Tentukanlah jumlah 20 suku pertamaPenyelesaianSuku ke-n ⇒ Un = a + n - 1bJumlah n suku pertama ⇒ Sn = n/2.[2a + n - 1b]U₇ = 25 dan U₁₀ = 37Sehingga,a + 9b = 37a + 6b = 25- - 3b = 12Diperoleh beda b = 4Substitusikan b ke salah satu persamaana + 64 = 25a + 24 = 25a = 25 - 24Diperoleh suku pertama a = 1Ditanya jumlah 20 suku pertamaS₂₀ = 20/2.[21 + 20 - 14]S₂₀ = 10.[2 + 76]S₂₀ = 10 x 78S₂₀ = 780Jadi jumlah 20 suku pertama adalah 7805. bila a,b,c merupakan suku berurutan yang membentuk barisan aritmetika, buktikan bahwa ketiga suku berurutan berikut ini juga membentuk barisan aritmetika 1/bc , 1/ca , 1/ab .JawabDik a,b,c merupakan suku berurutan yang membentuk barisan aritmetikaDIt buktikan bahwa membentuk barisan aritmetika 1/bc , 1/ca , 1/ab .PenyelesaianDeret aritmetikaa, b, c -> a + c = 2b ...1.1/bc , 1/ac, 1/ab -> Deret aritmetika1/bc + 1/ab = 2 /acab + bc/ b²ac = 2/acruas kiri = ruas kananab+bc/b²ac = 2/acba+c /b²ac = 2/acb2b/ b²ac = 2/ac2b²/b²ac = 2/ac2/ac = 2/ac..6. Tentukan banyak bilangan asli yang kurang dari 999 yang tidak habis dibagi 3 atau DIt banyak bilangan asli yang kurang dari 999 yang tidak habis dibagi 3 atau habis di bagi 3n = 999/3 = 333 karna kurang dari maka - 1 = 333-1 = 332yang habis di bagi 5n = 999/5 = = 199yang habis di bgi 3 dan 5 kpk 3 dan 5 adalah 15n = 999/15 = 66,6 = 66maka bilangan asli yang tidak habis di bagi 3 atau limabanyk bilangann = bilangan kurang dari 999 - habis di bagi 3 - habis di bagi 5 + habis di bagi 3 dan 5 = 998 - 332- 199+66 = 533jawabannya adalah 5337. Diketahui barisan yang dibentuk oleh semua bilangan asli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 … Angka berapakah yang terletak pada bilangan ke 2004 ? bilangan ke-12 adalah angka 1 dan bilangan ke-15 adalah angka 2.JawabDik bilangan asli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26Dit Angka berapakah yang terletak pada bilangan ke 2004 ? bilangan ke-12 adalah angka 1 dan bilangan ke-15 adalah angka 2.PenyelesaianU15=a+14b=2U12=a+11b=1- -3b=1b=1/3a+11b=1a+11/3=1a=3/3-11/3a=-8/3U2004=a+2003bU2004=-8/3+2003/3U2004=1995/3U2004=665 8. Pola A B B C C C D D D D A B B C C C D D D D A B B C C C D D D D ... berulang sampai tak hingga. Huruf apakah yang menempati urutan 2^6 dan 3^4?JawabDik Pola A B B C C C D D D D A B B C C C D D D D A B B C C C D D D D ... DIt Huruf apakah yang menempati urutan 2^6 dan 3^4?Penyelesaian2^{6} = 64 = c. Kenapa? karena pada pola tersebut sukunya berulang setiap 10 suku dan suku ke 64 angka satuannya adalah 4, dan suku ke 4 adalah C3^{4} = 81 = a. Alasannya sama seperti diatas, cuman suku ke 81 angka satuannya adalah 1, dan suku ke 1 adalah A9. Diketahui barisan yang dibentuk oleh semua bilangan asli 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 … Angka berapakah yang terletak pada bilangan ke 2013? bilangan ke-11 adalah angka 1 dan bilangan ke-12 adalah angka 6.JawabDik bilangan asli 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26DIt Angka berapakah yang terletak pada bilangan ke 2013? bilangan ke-11 adalah angka 1 dan bilangan ke-12 adalah angka 6.PenyelesaianA = 11b = 1Un = a n-1b = 11 2013-1 b = 11 2012 = 22132soal lannyaU11 ⇒ a + 10b = 1u12 ⇒ a + 11b = 6 -b = -5subtitusikana = 1 -10b = 1 - 10-5 = 1 + 50 = 5110. Suatu perusahaan minuman kaleng pada bulan Januari 2012 memproduksi minuman kaleng. Setiap bulan perusahaan tersebut menaikkan produksinya secara tetap sebanyak 250 kaleng. Berapa banyak minuman kaleng yang diproduksi perusahaan sampai akhir bulan Juni 2013?JawabDiksuku pertama = a = = b = 250Dit jumlah suku ke 18 = = ...Penyelesaian= 9 + 17*250= 9 + 9 banyak minuman kaleng yang diproduksi perusahaan sampai akhir bulan juli 2013 adalah Loncat ke konten Diposting pada September 20, 2022 Diketahui barisan yang dibentuk oleh semua bilangan asli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 … Angka berapakah yang terletak pada bilangan ke 2004? bilangan ke-12 adalah angka 1 dan bilangan ke-15 adalah angka 2. Jawaban 88 total views, 1 views today Posting terkait MatematikaALJABAR Kelas 11 SMABarisanPola BarisanDiketahui barisan yang dibentuk oleh semua bilangan asli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26.... Angka berapakah yang terletak pada bilangan ke-2013? bilangan ke-12 adalah angka 1 dan bilangan ke-15 adalah angka 2Pola BarisanBarisanALJABARMatematikaRekomendasi video solusi lainnya0103Untuk barisan-barisan berikut ini, tentukan tiga buah su...0150Tempat duduk dalam sebuah gedung pertunjukan diatur mulai...0159Pola bilangan untuk barisan 44,41,38,35,32, ... memenuhi ...0558Jika bilangan 2001 ditulis dalam bentuk 1-2+3-4+...+n-2... AHJawaban 668 Konsep Un = a + n - 1 . b Keterangan Un = suku ke-n a = suku pertama n = banyaknya suku b = beda/selisih Pembahasan Diketahui U12 = 1 U15 = 2 Ditanya U2013? Jawab Rumus Suku Ke-n Un = a + n - 1b U12 -> a + 11b = 1 U15 -> a + 14b = 2 Substitusikan a + 11b = 1 a + 14b = 2 - ___-3b = -1 b = 1/3 Substitusikan b = 1/3 ke salah satu persamaan a + 141/3 = 2 a = 2 - 14/3 a = 6/3 - 14/3 a = -8/3 Untuk mendapatkan nilai U2013 substitusikan a = -8/3 dan b = 1/3 U2013 = a + 2012b = -8/3 + 20121/3 = -8/3 + 2012/3 = 2004/3 = 668 Jadi, angka yang terletak pada bilangan U2013 adalah 668 Semoga bisa membantu yaŸ˜‰ Yah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!

diketahui barisan yang dibentuk oleh semua bilangan asli